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Abstract. The effects of the symmetry breaking terms, spin-orbit potential (SOP) and pseudospin-orbit
potential (PSOP), in the spin and pseudospin symmetries, respectively, are studied in a comparative way.
The analytical properties of the small component F of the Dirac spinor for pseudospin doublets (PSDs) are
investigated around the singularity point of the PSOP. We show that the PSOP and the pseudocentrifugal
barrier must be appropriately related to each other to describe adequately the wave functions in the nuclear
surface, whereas it is not the case for the centrifugal barrier and the SOP. We also determine a modified
PSOP smaller than the PSOP when the parameter κ̄, appearing in it, is left to vary in the domain of
real numbers. The inclusion of this modified PSOP allows us to define a continuous way that connects
the two states of a PSD as κ̄ varies continuously between the physical (integer) values of κ̄ corresponding
to these states. Our results indicate that whereas the SOP can be considered as a small spin symmetry
breaking term that allows a simple explanation of the spin symmetry, the consideration of the PSOP as
the pseudospin symmetry breaking term presents serious difficulties. Thus, we propose a new strategy to
explain, in a simple way, the quasi-degeneracy of the PSDs.

PACS. 24.10.Jv Relativistic models – 21.60.Cs Shell model – 21.10.Pc Single-particle levels and strength
functions – 24.80.+y Nuclear tests of fundamental interactions and symmetries

1 Introduction

1.1 The spin and pseudospin symmetries

The concept of pseudospin symmetry (PSS) appeared in
nuclear physics more than 30 years ago to rename the
single-particle (SP) levels in the shell model [1,2], but
only recently, this symmetry has been considered as a rel-
ativistic symmetry [3–10], claiming that it is not possible
to explain it properly in the non-relativistic framework.
Thus, in the recent years, many other works have studied
also the PSS using the relativistic framework through a
Dirac equation with appropriate potentials fitted to repro-
duce certain properties of finite nuclei [10,11] or through
the relativistic Hartree [12–16] or Hartree-Fock [17,18] ap-
proximations.

The PSS was originally associated to the frequently
observed quasi-degeneracy of pseudospin doublets in both
spherical and deformed nuclei. Two SP states labelled by

a e-mail: marcoss@unican.es

“a” and “b” make a pseudospin doublet (PSD) if their ra-
dial, orbital, and total-angular-momentum quantum num-
bers are related by the equations nb = na − 1, lb = la +2,
and jb = ja+1 = la+3/2, respectively. In the pseudospin
formalism, the same pseudo-orbital angular momentum
l̃ = (2j − l) is assigned to both states of a PSD, and
the total angular momentum of these states is given by
j = l̃∓ 1/2. We shall say a PSD exhibits PSS if their two
pseudospin (PS) partners have the same energy. In the
same way, we shall say that there is spin symmetry (SS)
if the two partners of a spin doublet (SD) have the same
energy. In this work, we investigate different aspects of
the spin and pseudospin symmetries in the Dirac-Hartree
approximation.

1.2 The Dirac-Hartree Approximation (DHA)

In the DHA (where the tensor contribution of the vector
mesons is neglected), the SP states are obtained from a
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Dirac equation that can be written as

[−iα ·∇ + β(M +ΣS) +Σ0]ψ(~r ) = Eψ(~r ), (1)

where, E = M + ε is the relativistic energy, M is the
nucleon mass, ΣS is the scalar self-energy coming from
the scalar σ-meson and Σ0 is the vector self-energy coming
from the vector ω and ρ mesons and the Coulomb field.
For spherical nuclei (to which we restrict ourselves in this
work), the nucleon Dirac spinor ψ(~r ) can be written, in
standard notation, as

ψ(~r ) =
1

r

(

iG(r)ymjl (θ, φ)
F (r)ym

jl̃
(θ, φ)

)

, (2)

where G(r)
r and F (r)

r represent the radial parts of its big

and small components, respectively. Notice that l̃ = l ± 1
appears in the small component of the spinor.

By substituting eq. (2) into eq. (1), one can get the
following Dirac equation for the G and F components:

d

dr
G(r) = −

κ

r
G(r) +W F (r),

(3)

d

dr
F (r) = V G(r) +

κ

r
F (r).

In this equation,

κ ≡ (2j + 1)(l − j) = j(j + 1)− l̃(l̃ + 1) + 1/4, (4)

whereas

V ≡ ΣS +Σ0 − ε, W ≡ 2M +ΣS −Σ0 + ε (5)

are energy-dependent potentials.
From the Dirac equation (3), one can get the two fol-

lowing equivalent second-order differential equations for
the G and F components of the nucleon Dirac spinor:

−G′′ +

[

W ′

W

(

G′

G
+
κ

r

)

+
l(l + 1)

r2
+ VW

]

G = 0, (6)

−F ′′ +

[

V ′

V

(

F ′

F
−
κ

r

)

+
l̃(l̃ + 1)

r2
+ VW

]

F = 0, (7)

where the following relations:

l(l + 1) = κ(κ+ 1) (8)

and
l̃(l̃ + 1) = κ(κ− 1) (9)

hold, in accordance with eq. (4), and the quantity

VW = 2MV + 2εΣ0 + (Σ2
S −Σ

2
0)− ε

2 (10)

represents an effective state-dependent potential.
The quantum number κ takes different values for the

two states of each spin and pseudospin doublets. Thus, in

eqs. (6) and (7), the terms proportional to κ, to which
we shall refer to as the spin-orbit potential (SOP) and
pseudospin-orbit potential (denoted as PSOP or also as
Uκ), respectively, or, simply, the G− κ and F − κ terms,
explicitly break the degeneracy of the two partners of a
SD or a PSD. In what follows, we shall designate by “a”
and “b” the two states of a SD or PSD with κ < 0 and
κ > 0, respectively. In refs. [14,15], it has been shown
that whereas two states of a SD can be connected by a
continuous way as κ (considered as a real number), in
eq. (6), varies continuously from κa to κb, it is not possible
for two states of a PSD as κ varies in eq. (7).

The PSS has been considered slightly broken in nuclei
by some authors [6–9] because the F − κ term in eq. (7)
is small. More precisely, the condition required by these
authors is that the magnitude of the F−κ term should be
much smaller than the pseudocentrifugal barrier (PCB),

i.e., |Uκ ≡
V ′

V
κ
r | ¿ Ul̃ ≡

l̃(l̃+1)
r2 . This condition can be

considered less restrictive than the condition ΣS ' −Σ0

considered in refs. [3,5].
The aim of this work is: A) to study, in a comparative

way, the effects of the symmetry breaking κ terms in the
spin and pseudospin symmetries; B) to investigate the an-
alytical properties of the small component F of the Dirac
spinor for PSDs around the singularity point of the PSOP;
C) to show that the PSOP and the PCB are both essen-
tial to describe adequately the nucleon wave functions in
the nuclear surface where r0, the singularity point of the
PSOP, is localized; D) to determine the conditions that
allow to find a continuous way to connect two states of a
PSD as κ varies continuously, as a real number, from κa
to κb; E) to show that the relations εa ' εb and Fa ' Fb
for the two PS partners in finite nuclei are not directly
dependent on each other; F) to investigate whether it is
possible to find a term smaller than the F − κ term re-
sponsible for the small splittings of the PSDs in nuclei;
G) to present a new strategy to explain the PSS.

In sects. 2 and 3, we investigate the effects of the
spin and pseudospin symmetry breaking terms (extending
them to real values of κ) on the energies and the compo-
nents G and F of the SP Dirac spinor corresponding to the
spin and pseudospin doublets, analysing their differences
in detail. In sect. 4, we identify a modified PSS breaking
term that, in some cases, is weaker than the PSOP. In
sect. 5, a new strategy to explain the PSS, valid in the
relativistic as well as in the non-relativistic formalism, is
proposed. In sect. 6 we discuss to which extent our results
have a general character and can be applied to the spin
and pseudospin doublets of nuclei different from the 40Ca
nucleus treated in the present paper. The conclusions are
drawn in sect. 7.

2 Equation for the G and F components of
the Dirac spinor for real values of κ

In the Dirac equation and, consequently, in eqs. (6)
and (7), only integer values of κ, both negative (κa) and
positive (κb), have physical meaning. However, to study
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the G − κ and the F − κ terms, from a purely mathe-
matical point of view, one may also consider equations
with the same structure of eqs. (6) and (7) but allowing a
continuous variation of the parameter κ (maintaining the

physical values of l in eq. (6) and l̃ in eq. (7) corresponding
to the physical integer values of κ according to eqs. (4),
(8) and (9)). This real parameter will be designated as κ̄
in what follows. For clarity, we write explicitly in terms of
κ̄ the two equations (6) and (7) for the G and F functions,
respectively, as

−G′′ +

[

W ′

W

(

G′

G
+
κ̄

r

)

+
l(l + 1)

r2
+ VW

]

G = 0. (11)

−F ′′ +

[

V ′

V

(

F ′

F
−
κ̄

r

)

+
l̃(l̃ + 1)

r2
+ VW

]

F = 0, (12)

where l and l̃ satisfy eqs. (8) and (9), respectively.
Notice that the character, integer or real, of κ in the

spin and pseudospin symmetry breaking terms would not
be essential if these terms were really small. If this were
the case, eqs. (11) and (12) with κ̄ real would continue
having an important physical meaning. For example, the
case corresponding to κ̄ = 0 would represent the situation
of exact spin or pseudospin symmetry for which εa = εb
and Ga ∝ Gb or Fa ∝ Fb, respectively. The case of ex-
act symmetry, although it corresponds to a non-physical
situation, would allow to understand, in a mathematical
way, why the approximate physical symmetry does hap-
pen in finite nuclei. The conclusion obtained in refs. [6–9]
that the PSS breaking term is small implicitly means that
the character, integer or real, of κ is not essential. Revers-
ing the previous arguments, the study of the solutions of
eqs. (11) and (12) with κ̄ real can shed light on the genuine
relevance of the symmetry breaking terms to the realiza-
tion of the spin and pseudospin symmetries, respectively.
Equations (11) and (12) can be studied directly but, from
the physical point of view, the corresponding equivalent
Dirac equations are more relevant.

3 Equivalent Dirac equations

Each of eqs. (11) and (12) can be easily obtained from two
different Dirac equations that we shall study in detail in
what follows. As we shall see, if the G− κ or F − κ term
were small, one of these equations would connect continu-
ously, as κ̄ varies, the component G or F of the two states
of a SD or PSD, respectively, whereas the other, would
connect both components. Let us study first the case cor-
responding to eq. (11) for the component G.

3.1 Dirac equations equivalent to eq. (11) for G and
the spin symmetry

Choice 1. Equation (11) can be obtained from the Dirac
equation (3) by replacing V by V̄ , defined by the equations

V̄ (r) = V (r) +∆V (r), ∆V (r) = −
W ′

W 2

κ− κ̄

r
. (13)

Fig. 1. The physical wave functions Ga and Gb, solutions of
eq. (11) or eq. (14), with κ̄ = κa (solid line) and κ̄ = κb (dashed
line), respectively, for the 1d neutron spin-orbit doublet of the
40Ca nucleus and the NL-SH parameter set [20]. The dash-
dotted curve represents the G function for the case κ = −3
and κ̄ = 0, i.e., the non-physical function Ga(κ̄ = 0.). Notice
that a curve proportional to Ga(κ̄ = 0.) would be obtained for
κ = 2 and κ̄ = 0, corresponding to the non-physical function
Gb(κ̄ = 0.).

The Dirac equation including ∆V reads

d

dr
G(r) = −

κ

r
G(r) +W F (r),

(14)

d

dr
F (r) = (V +∆V ) G(r) +

κ

r
F (r).

Equation (14) allows us to write the component F in terms
of the function G as

F =
1

W

(

G′ +
κ

r
G
)

. (15)

Equations (11) and (15) are equivalent to the Dirac equa-
tion (14) for any real value of κ̄. For κ̄ = κ (integer),
eq. (14) and also eqs. (11) and (15) are equivalent to the
Dirac equation (3). It is worth noting that for each value
of G obtained from eq. (14) for a given value of κ̄, we
have two functions F , Fa(κ̄) and Fb(κ̄), corresponding to
κ = κa and κ = κb, respectively, with the same energy
(εa(κ̄) = εb(κ̄)).

As was shown in ref. [15], the G component and the
energies of the two physical states a and b can be con-
nected by a continuous way as κ̄ varies continuously from
κ̄ = κa to κ̄ = κb. This means that the SP energy ε and the
component G in eqs. (11) and (14) vary continuously as a
function of κ̄ from the physical values obtained for κ̄ = κa
to the corresponding ones obtained for κ̄ = κb. Actually,
ε can vary considerably, almost linearly, whereas the vari-
ations of G are very small [15]. One has, in particular,
Ga ' Gb, as can be appreciated in fig. 1 for the two states
of the neutron SD of the 40Ca nucleus. Thus, the effect of
the G− κ term in eq. (11) on the function G seems to be
small. In fact, according to our results, these effects can
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a)

b)

Fig. 2. (a) The wave function F (Fa) for the neutron 1d5/2

state (κ = −3) of the 40Ca nucleus, solution of eq. (14) with
the values of κ̄ indicated in the figure, for the NL-SH set. The
case κ̄ = κ = −3 represents the physical state. (b) The same
as (a) but now for the wave function F (Fb) corresponding to
the neutron 1d3/2 state (κ = 2). The case κ̄ = κ = 2 represents
the physical state.

be considered almost perturbative, though the spin-orbit
splitting for the proton and neutron 1d doublets amounts
to about 6–7 MeV [19].

To better appreciate the role of the G − κ term in
eq. (11), it is instructive to analyse not only its effect on
the G functions of the SDs, but also its indirect effect
on the corresponding F components of the Dirac spinors
through eq. (15). This procedure can help us to show up
more clearly some symmetry breaking effects. The evolu-
tion of the small components Fa and Fb obtained from
eq. (14) (or eqs. (11) and (15)) for a SD as κ̄ varies from
κa to κb can be observed in figs. 2a and b, respectively.
It is seen that the two functions do not change very much
with κ̄: Fa (for κ̄ = κb) ' Fa (for κ̄ = κ = κa) and Fb (for
κ̄ = κa) ' Fb (for κ̄ = κ = κb). Only in the nuclear
surface the differences are more significant, in accordance
with what happens also with the large components Ga

and Gb in fig. 1. These differences are due to the effect of
the G − κ term that breaks the spin symmetry (SS). In

absence of this term, eq. (11) would not depend on κ̄ and,
consequently, for the states of a SD, G would be also inde-
pendent of the value of κ̄ (one would have, in particular1,
Ga ∝ Gb). Then, eq. (15) indicates also that Fa(κ̄) and
Fb(κ̄) would not vary with κ̄ (one would have, in partic-
ular, Fa (for κ̄ = κb) = Fa (for κ̄ = κ = κa) and Fb (for
κ̄ = κa) = Fb (for κ̄ = κ = κb)). The results found for
SDs seem to be quite natural but, as we shall see in the
case of PSDs, they crucially depend on the characteristics
of the corresponding symmetry-breaking term.

Choice 2. Equation (11) for the G component can also be
obtained from the following Dirac equation:

d

dr
G(r) = −

κ̄

r
G(r) +W F (r),

(16)

d

dr
F (r) = (V +∆V ′) G(r) +

κ̄

r
F (r),

where

∆V ′ =
κ(κ+ 1)− κ̄(κ̄+ 1)

Wr2
. (17)

Now, from eq. (16), we get

F =
1

W

(

G′ +
κ̄

r
G
)

. (18)

Notice that, in eq. (16), it appears κ̄ multiplying G(r) and
F (r) (not κ) and that for two spin partners and a given
value of κ̄ (real), eqs. (11), (14) and (16) have identical
solutions for ε and G. However, the situation is different
for F . Whereas for a given value of κ̄, eq. (14) has two
types of solutions for F , depending on the value of κ cho-
sen, κa or κb (see eq. (15)), eq. (16) has only one type of
solutions (see eq. (18)), though the detailed form depends
on κ̄. Thus, the number of nodes (ñr) of F in eq. (16)
(or in eq. (18)) depends, in principle, on the value of κ̄.
Figure 3 shows the component F for the 1d neutron SD of
the 40Ca nucleus obtained from eq. (16) for several values
of κ̄. We can see that F changes continuously between the
two physical functions Fa and Fb, and that the number of
nodes (ñr) of F is equal to the number of nodes (ñrb) of
Fb for values of κ̄ such that κa < κ̄ ≤ κb.

Our analysis of the behaviour of the solutions of
eqs. (11), (14) and (16) for the spin doublets shows that
the effect of the SS-breaking G − κ term is quite small
in all aspects studied. Even if the spin-orbit splittings are
large, the G − κ term behaves almost as a perturbative
term. In this sense, it can be considered, appropriately,
as a small symmetry breaking term. In the rest of this
section, we shall try to do a similar analysis for the PSS
breaking F − κ term.

1 Notice that one would get G(κ̄) = Ga for κ = κa and
G(κ̄) = Gb for κ = κb (independently of the value of κ̄). Then,
as l in eq. (11) takes the same value for κ = κa and κ = κb,
necessarily, Ga ∝ Gb.
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Fig. 3. The wave function F for the neutron SD of the 40Ca
nucleus, solution of eq. (16) with the values of κ̄ indicated in
the figure, for the NL-SH set. The cases κ̄ = κ = −3 and
κ̄ = κ = 2 represent the physical states.

3.2 Dirac equations equivalent to eq. (12) for F and
the pseudospin symmetry

In the same way we have considered two Dirac equations
equivalent to eq. (11) for the large component G of the
Dirac spinor of a nucleon, we can construct also two Dirac
equations formally equivalent to eq. (12) for the corre-
sponding small component F of the Dirac spinor. How-
ever, before doing that, we are going to analyse carefully
this equation.

Solutions of eq. (12) for F
At first sight, eqs. (11) and (12) look very similar to each
other, however, there is an important difference related
to the distinct properties of the V and W potentials.
Whereas W is a large quantity everywhere in the nucleus,
V becomes zero at some point r0 in the nuclear surface,
making the factor V ′/V to diverge at r0. To see the con-
sequence of this fact, we have analysed in detail the be-
haviour of the solutions of eq. (12) for F in appendix A.
As shown there (see also refs. [14,15]), to ensure finite
F ′′ at the singularity point r0, it is necessary the factor
(F ′/F − κ̄/r) to vanish at this point. Furthermore, to pre-

serve the analyticity of F , it is necessary for l̃ and κ̄ to be
related to each other according to eq. (9). This means, in
accordance with eq. (4), that the only acceptable values
of κ̄ for the two states of a PSD are the integer values κa
and κb

2. Thus, in contrast to the results of eq. (11) found
for the large component G of two states of a SD, eq. (12)
for the small component F does not allow us to connect
two states of a PSD by a continuous variation of κ̄.

The continuity of the solutions of eq. (12) as κ̄ varies
can be reached by the replacement of κ by κ̄ in the PCB

2 This means, in particular, that the case κ̄ = 0, which would
correspond to a case of exact symmetry, cannot be reached
with analytical G and F functions if the potential V vanishes
inside the nucleus, which always happens for bound states in
any realistic model of nucleus [14,15].

Fig. 4. The modified PCB Ūl̃ given by eqs. (20) and (21)
for the indicated values of κ̄ and the NL-SH parameter set.
In eq. (21), the quantity (r − r0) has been approximated by
V/V ′ (as explained in the text) and we have taken m = 2
and c = 2 fm−2. The cases κ̄ = κ = −1, 2 correspond to the
physical PCB.

too, so that the corresponding l̃ and κ̄ are related to each
other in the same way as l̃ and κ are in eq. (9). The prob-
lem is that, in this case, the PCB, which is large for small
values of r, differs too much from its physical values ex-
cept when the values of κ̄ and κ are close to each other.
We can solve this problem by modifying the PCB, essen-
tially, around r0 as, for example, is made in the following
equation:

−F ′′ +

[

V ′

V

(

F ′

F
−
κ̄

r

)

+
l̃(l̃ + 1)

r2

+
κ̄(κ̄− 1)− l̃(l̃ + 1)

r2
e−c(r−r0)

m

+ VW

]

F = 0. (19)

This equation is formally similar to eq. (12) but with the
modified pseudocentrifugal barrier

Ūl̃ = Ul̃ +∆Ul̃κ̄, (20)

where

∆Ul̃κ̄ =
κ̄(κ̄− 1)− l̃(l̃ + 1)

r2
e−c(r−r0)

m

. (21)

Notice that, for the states of a PSD, ∆Ul̃κ̄ = 0 for κ̄ = κa
or κ̄ = κb, but ∆Ul̃κ̄ 6= 0 for other values of κ̄. Thus,
we can say that this term breaks also the PSS for non-
physical situations where κ̄ 6= κ and, consequently, could
be also included in a modified or extended PSOP rather
than in the modified or extended PCB.

Figure 4 shows the modified PCB Ūl̃ given by eqs. (20)
and (21), with (r−r0) replaced by V/V ′ (corresponding to
the NL-SH parameter set [20]3), m = 2 and c = 2 fm−2,
for several values of κ̄. Ūl̃ is appreciably different from
Ul̃ only near the singularity point r0. For r far from r0,

3 Near r0, V
′/V ' r − r0 and only depends appreciably on

the chosen potential V through r0.
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Ūl̃ ' Ul̃. However, for r → r0, Ūl̃ →
κ̄(κ̄−1)
r2 . Thus, F ′′,

obtained from eq. (19), can remain finite and F analytical
at the singularity point r0 for real values of κ̄.

After the analysis of the solutions of eq. (12) for the
function F , which brought us to propose a modification
of this equation for the non-physical region of κ̄, we are
going to investigate whether it is possible to find two cor-
responding equivalent Dirac equations, as we did for the
equation for the big component G.

Dirac equations

Choice 1. Equation (19) can be obtained from the Dirac
equation (3) by replacing W by W̄ , defined by the equa-
tions:

W̄ (r) = W (r) +∆W (r) ,

∆W (r) =
V ′

V 2

κ−κ̄

r
+
κ̄(κ̄−1)− l̃(l̃ + 1)

V r2
e−c(r−r0)

m

. (22)

The Dirac equation including ∆W reads

d

dr
G(r) = −

κ

r
G(r) + (W +∆W ) F (r),

(23)

d

dr
F (r) = V G(r) +

κ

r
F (r).

Equation (23) allows to obtain the G component from the
function F as

G =
1

V

(

F ′ −
κ

r
F
)

. (24)

For κ̄ = κ (integer), eq. (23) and eqs. (19) and (24) are
equivalent to the Dirac equation (3). For real values of
κ̄, eqs. (19) and (24) are still formally equivalent to the
Dirac equation (23). However, as V (r0) = 0, it is clear
that even if F , obtained from eq. (19), is analytical at r0,
G, obtained from eq. (24), becomes divergent at r0, since,
although F satisfies the relation (F ′ − κ̄

rF )r0 = 0, the
factor (F ′ − κ

rF )r0 6= 0. Thus, in relation with eq. (23),
the conditions of analyticity at r0 for G and F are incom-
patible if κ̄ 6= κ. The factor V −1 in eq. (24) behaves as
an amplification factor of the effects of the PSS breaking
on the functions F when these effects are “transmitted”
to the corresponding functions G. In this way, we can say
that the functions G are more sensible to the PSS breaking
effects than the functions F .

The results obtained for PSDs contrast, frontally, with
the corresponding results obtained for SDs, where Ga,b(κ̄)
and Fa,b(κ̄) change continuously as a function of κ̄. The
reason for these crucial differences is that, whereas the
SOP is a smooth quantity, the PSOP is singular in the
nuclear surface. Actually, as in the denominator of the
SOP there appears the addend 2M (throughW ), the SOP
can be considered as a relatively small quantity in rela-
tion to the PSOP, which is divergent at r0. Although the
spin-orbit splittings (∆ESO) in the SP spectra are usually
larger than the pseudospin splittings (∆EPSO), the differ-
ences between Fa and Fb for the PSDs are much larger
than those between Ga and Gb for the SDs, mainly in the
nuclear surface near the singularity point of the PSOP

Fig. 5. The wave function F for the neutron PSD of the 40Ca
nucleus, solution of eq. (25), or eqs. (19) and (27), for the
values of κ̄ indicated in the figure, and the NL-SH set. For the
quantities r − r0, m and c we have used the same criterion as
in fig. 4. The cases κ̄ = κ = −1 and κ̄ = κ = 2 represent the
physical states.

(compare figs. 1 and 54). One of the reasons for the in-
equality ∆EPSO ¿ ∆ESO can be attributed to the fact
that the PSOP is, roughly, an odd operator around the sin-
gularity point r0, whereas the SOP is almost an even op-
erator with respect to its point of maximum in the nuclear
surface. Actually, if the PSOP in eq. (12) were replaced by
its absolute value, its perturbative contribution to the SP
energy would diverge and the nucleus would be unbound.

Now, we are going to investigate a second possibility
of finding a continuous path, defined also as a parametric
function of κ̄, that allows us to connect the two physical
states of a PSD, as we have already done for the SDs.
This will help us to better understand the mathematical
structure of the Dirac equation in relation with the PSDs.

Choice 2. Equation (12) for the F component can also be
obtained from the following Dirac equation:

d

dr
G(r) = −

κ̄

r
G(r) + (W +∆W ′) F (r),

(25)

d

dr
F (r) = V G(r) +

κ̄

r
F (r),

where

∆W ′(r) =
κ(κ− 1)− κ̄(κ̄− 1)

V r2
[1− e−c(r−r0)

m

]. (26)

Now, from eq. (25), we get

G =
1

V

(

F ′ −
κ̄

r
F
)

. (27)

4 Notice that the functions F in fig. 5 have the number of
nodes ñr = 2, whereas the function G in fig. 1 has the number
of nodes nr = 1, and that the difference between the functions
of a SD or a PSD decreases as nr or ñr increases, respec-
tively [15].
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Fig. 6. The big component G(r), corresponding to the cases
considered in fig. 5 for the component F .

Notice that, as previously in eq. (16), in eq. (25) κ̄ (rather
than κ) appears as a factor multiplying G(r) and F (r),
and that for two pseudospin partners and a given value
of κ̄ (real), eqs. (19), (23) and (25) admit, in principle,
identical solutions for ε and F . However, the two possible
functions G obtained from eq. (24) for κ = κa and κ = κb
would be divergent at r0 and, consequently, would not be
adequate to describe a physical system. As eq. (16) for F ,
eq. (25) has only one type of solutions for G (see eq. (27))
and they are analytical. The number of nodes (nr) of G
in eq. (25) depends, in principle, on the value of κ̄, as
shown by eq. (27). As we shall see, nr remains equal to
the number of nodes of Ga (nra) for values of κ̄ such that
κa ≤ κ̄ < κb.

The procedure used in this subsection allows us to find
solutions of eq. (25), or eqs. (19) and (27), with good
asymptotic behaviour for real values of κ̄. As an exam-
ple, we present some results for the neutron PSD (l̃ = 1)
of the 40Ca nucleus with the relativistic parameter set NL-
SH [20] (in the calculations, the quantity (r−r0) appearing
in eqs. (19) and (26) has been replaced by (V/V ′), in ac-
cordance with the arguments given above). Figure 5 shows
the small component F (r) for several real values of κ̄. One
can see that, for κa ≤ κ̄ ≤ κb, F (r) changes continuously
between the physical functions Fa and Fb, remaining ap-
preciably similar to them. Figure 6 shows the correspond-
ing big component G(r) (for the same real values of κ̄ as
in fig. 5). One can see that as κ̄ increases from κa to κb,
G(r) evolves continuously from Ga to Gb, the number of
nodes nr remaining equal to the number of nodes nra of
Ga(r) for κa ≤ κ̄ < κb. Thus, eq. (25) (or eqs. (19) and
(27)) allows us to connect, through a continuous way, the
two physical states of a PSD, in opposition to eq. (23) (or
eqs. (19) and (24)) that does not allow this connection.
Figure 7 shows the SP energy ε obtained from eq. (25) (or
eq. (19)) as a function of κ̄. It is remarkable that ε is a con-
tinuous function of κ̄ that crosses the SP energies εa and
εb corresponding to the physical values. We remind also
that this does not happen with the eigenvalues of eq. (23)
(or eqs. (12) or (19) with (24), if the analyticity of G is

Fig. 7. The single-particle energy ε, solution of eq. (25) or
eqs. (19) and (27), as a function of κ̄, for the neutron PSD of
the 40Ca nucleus with the NL-SH set. For the quantities r−r0,
m and c we have used the same criterion as in fig. 4.

required), they do not cross the physical values as we have
explained above (see also refs. [14,15]).

4 The PSS breaking term and the PSS

Equation (19) for the function F allows us also to iden-
tify a modified PSS breaking term (PSOP) that produces,
in combination with the Dirac equation (25), moderate
changes in the energies and in the components F of the
PSDs as κ̄ varies continuously from κ̄ = κa to κ̄ = κb.
Although it does not allow to connect the physical states
a and b in a perturbative way (according to our results of
ref. [13]), it allows a smooth transition between the states
a and b. In accordance with eq. (19), the PSOP can be
defined as

Ūκ̄ = Uκ̄ +∆Ul̃κ̄, (28)

where we remind that Uκ̄ = V ′

V
κ̄
r is the PSOP (with

κ → κ̄) and ∆Ul̃κ̄ is defined by eq. (21). Notice that the
term ∆Ul̃κ̄ near r = r0, where it is relevant, behaves as the
PCB Ul̃ (since the PSOP is divergent at r0, the addend
∆Ul̃κ̄ represents only a very small fraction of the PSOP

around r0). Thus, we have got a PSOP, Ūκ̄, that, in com-
bination with eq. (25), is weaker than the PSOP Uκ̄. Our
results in appendix A and in the previous section indicate
that the PSS breaking term and the PCB must be ade-
quately related to each other to guarantee analytical prop-
erties for the components F and G of the Dirac spinors
around r0, although, for real values of κ̄, it is only possible
in combination with the Dirac equation (25). In relation
with the Dirac equation (23), the PSOP is still, essentially,
as strong as the PSOP. In accordance with our results, we
conclude that, at any circumstances, the magnitude of the
PSOP cannot be considered much smaller than the PCB,
in opposition to what is claimed erroneously in refs. [6–9].
On the contrary, since they must be related to each other
in accordance with eq. (9) to guarantee an acceptable be-
haviour of the G and F components of the Dirac spinor
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in the nuclear surface, the PSOP and the PCB must be
considered at a similar level of relevance in eq. (12).

As we have discussed in ref. [15], the strength of the
PSOP makes it difficult to explain the approximate PSS
observed in nuclei starting from a situation of exact PSS
as that considered in refs. [3–5]: ΣS+Σ0 = 0, or in ref. [15]
for Uκ̄ with κ̄ < κa, by our group, since the remaining way
until the physical situation with realistic values of ΣS+Σ0

and Uκ̄ cannot be realized in a perturbative way in any of
the two cases.

We have also concluded in refs. [13–18], using different
arguments, that the similarity found in the relativistic cal-
culations between Fa and Fb for the two states of a PSD,
cannot justify that εa ' εb (which contradicts the conclu-
sions of refs. [3–9]). One of the arguments that support this
statement can be found in the results of sect. 2 that indi-
cate that Ga and Gb for the partner states of the SDs are
more similar than Fa and Fb for the partner states of the
PSDs5, in spite of the fact that the spin-orbit splittings for
SDs are generally larger than the pseudospin-orbit split-
tings for PSDs. We should not forget also that the condi-
tion εa = εb for the two states of a PSD is compatible with
Fa 6= Fb. In fact, the equality εa = εb implies, necessarily,
that Fa 6= Fb (actually, Fa and Fb cannot be even propor-
tional to each other) [13,15]. We have seen in sect. 2, that
the progressive quenching of the SOP produces small and
continuous modifications of the eigenenergies and eigen-
functions, so that εa approaches to εb and Ga becomes
proportional to Gb for SDs. However, the quenching of
the PSOP produces discontinuities both in the energies
and in the wave functions.

5 In fact, to be more complete, one should compare also the
differences between Ga and Gb for a SD with the effects of
the differences between Fa and Fb for a PSD on the corre-
sponding Ga and Gb functions obtained from eq. (24) (which
is compatible with eq. (3)). For example, in the case of exact
PSS (if it were possible) we should have εa = εb and Fa ∝ Fb
and, for κ = κa, we would obtain Fa → Ga = 1

V

(

F ′a −
κa

r
Fa

)

,

Fb → G = 1

V

(

F ′b −
κa

r
Fb

)

∝ Ga+∆Ga, with ∆Ga = 0. In the
same way, for κ = κb, we would obtain Fb → Gb, Fa → G ∝
Gb + ∆Gb, with ∆Gb = 0. But, since for realistic models of
nuclei V (r0) = 0, for some point r0 in the nuclear surface, and
κa 6= κb ⇒ |∆Ga| → ∞ or/and |∆Gb| → ∞ for r → r0. This
result indicates that the exact PSS (εa = εb, Fa ∝ Fb) is in-
compatible with nuclear models in which V (r0) = r0, i.e., with
models giving bound PSDs. In real nuclei, with approximate
PSS, we have for r → r0: |∆Ga(r)| → ∞ and |∆Gb(r)| → ∞.
Notice that this is a particular case of the result given in the
second part of sect. 2 (choice 1). A similar analysis could be
made by comparing the differences between Fa and Fb for a
PSD with ∆Fa and ∆Fb obtained from eq. (18) with the func-
tions G of a SD in the same way as we obtained ∆Ga and ∆Gb

from the functions F of a PSD. The result can be observed by
comparing fig. 5 with figs. 2a and b. We can see that in this
case |∆Fa|, |∆Fb| ¿ |Fa − Fb|. Thus, it is quite clear that the
effect of the PSS breaking term is much larger than the effect
of the SS breaking term, in contradiction to what was generally
believed until we questioned that in refs. [14,15].

5 New strategy to explain the PSS

The facts just discussed in the previous paragraph indicate
that the conditions εa ' εb and Fa ' Fb, for the two states
of a PSD, are not strictly dependent on each other. We can
use this fact as an argument to recover the original concept
of PSS as a degeneracy of the PSDs, no matter whether Fa
and Fb are proportional to each other or not. That is why
we have proposed in ref. [16] an explanation of the PSS
starting from a situation of exact degeneracy of the PSDs
but where Fa and Fb are not proportional to each other.
The starting model satisfies ΣS −Σ0 = 0 (i.e., there is no
spin-orbit interaction), whereas ΣS + Σ0 is a harmonic-
oscillator potential. This model, defined by the Hamilto-
nian H0, produces degenerate SDs with Ga ∝ Gb and
degenerate PSDs but with Fa non-proportional to Fb [10].
Then, although a more realistic quantity ΣS +Σ0 breaks
the degeneracy of the PSDs, the choice of appropriate val-
ues forΣS−Σ0 6= 0 partially restores the quasi-degeneracy
of the PSDs. Thus, we can say that there is a continuous
(almost perturbative6) way that connects the model satis-
fying exact degeneracy of the PSDs with realistic models
of nuclei with approximate PSS.

Since the consideration of the PSOP as the PSS break-
ing term requires the two conditions εa ' εb and Fa ∝ Fb
to be directly dependent on each other, our present form
of understanding the PSS indicates that the PSOP is not
the appropriate choice for the PSS breaking term in this
model. Let us see how we can define an appropriate new
one in accordance with the present interpretation of the
PSS. Let us write the SP Hamiltonian corresponding to
eq. (1) as H = H0+H1, where H0 exhibits exact degener-
acy of PSDs andH1 represents the corresponding breaking
term.

If the Dirac equation corresponding to H is given by
eq. (3), and we write W = W0 +W1, V = V0 + V1 and
ε = ε0 + ε1, where W0, V0 and ε0 represent, respectively,
the potentials entering eq. (3) and the SP binding en-
ergy (with opposite sign) corresponding to H0, we have
W0 = 2M + ε0 and V0 = Ω − ε0, Ω being an appropri-
ate harmonic-oscillator potential for a given nucleus, and
W1 = ΣS −Σ0 + ε1 and V1 = ΣS +Σ0 −Ω − ε1.

From the Dirac equation, we get the following equiva-
lent equation for the small component F :

−F ′′ +

[

V ′0 + V ′1
V0 + V1

(

F ′

F
−
κ

r

)

+
l̃(l̃ + 1)

r2

+ (V0 + V1)(W0 +W1)

]

F = 0 , (29)

where the F − κ term breaks explicitly the relation
Fa ∝ Fb, even if V1 = W1 = 0. However, in this case,
we have εa0 = εb0 [10] (indicating that the F − κ term
is not the appropriate PSS breaking term). The fact

6 This connection is made in two steps: the change of the
harmonic-oscillator potential to a more realistic one and the
inclusion of the SOP. Both steps can be considered almost
perturbative (we have realized above that this is the case for
the SOP).
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that the F − κ term is not a perturbative term facil-
itates this equality7. The self-consistency effects due to
the F − κ term, which breaks the proportionality be-
tween Fa and Fb, exactly compensate the contribution of
the F − κ term to the pseudospin-orbit splittings. It is
important to remind that this situation of exact degener-
acy of the PSDs is compatible with bound nuclei, on the
contrary to what happens with the exact PSS considered
in refs. [3–5]. When the potentials V1 and W1 entering
eq. (29) are considered, their effects are almost perturba-
tive and the real nuclei are recovered.

The model can explain the relation εa ' εb for the
pseudospin partners, but, how can we explain the relation
Fa ' Fb found also in relativistic calculations for PSDs
with ñr ≥ 3? The similarity between Fa and Fb for the
two states of a PSD in the inner region of the nuclei can be
explained, independently of εa ' εb, because the effects of
the F −κ term, responsible for the lack of proportionality
between Fa and Fb, are mainly important in the nuclear
surface due to the singularity of the F − κ term at r0.
Furthermore, since the role of the terms entering F ′ and,
mainly, F ′′ in eq. (29) increases with the number of nodes
(ñr) of F [15], Fa and Fb become more similar as ñr in-
creases and, generally, the same happens with εa and εb
(although the relation Fa ' Fb cannot justify the small
splitting of PSDs found in calculations [13,15]). This can
be understood taking into account that the contribution
of the F − κ term in eq. (29) to the ∆EPSO is smaller
and, quite generally, with a sign opposite to that of the
rest of the terms entering this equation [13,15], which only
depends on the differences between Fa and Fb and εa and
εb (to a minor degree, through V ).

It is important to notice that the basis of this expla-
nation for the PSS is not the relativistic character of the
model used. It can be formulated in similar terms for the
non-relativistic models. In this case, the starting point is
the non-relativistic SP harmonic-oscillator potential with-
out spin-orbit interaction. This model produces also de-
generate SDs and PSDs. When a more realistic SP poten-
tial is used, the degeneracy of the PSDs is broken, but it
is again partially restored if an adequate spin-orbit inter-
action is added by hand. Thus, the PSS can be explained
in a simple and similar way in the relativistic and non-
relativistic approximations, although the spin-orbit inter-
action, which plays an important role in this explanation,
is more naturally incorporated in the relativistic models.
It is important that the explanation of the PSS be valid
also in the non-relativistic case, since the quantities V1
andW1 cannot be neglected in realistic models in the non-
relativistic limit8. A more detailed analysis of the consid-

7 Notice that our actual form of understanding the PSS is
based on the fact that the F − κ term is large rather than
small. The case considered here supplies also an example of the
independence between the relations εa0 ' εb0 and Fa ∝ Fb.

8 Notice also that the PSOP can be considered neither ex-
clusively as a relativistic term in the sense that it cannot be
neglected in the equation for the function F as M becomes
very large.

erations presented in this section in relation to the PSS is
made in appendix B.

6 On the generality of the results obtained

Although we have presented, as an example, only nu-
merical results for the (1d3/2, 1d1/2) neutron SD and the

(2s1/2, 1d3/2) neutron PSD of the 40Ca nucleus, the qual-
itative aspects of our conclusions are completely general
and can be applied, without restriction, to the neutron or
proton SDs and PSDs of any other nucleus (and their va-
lidity is not restricted to the Dirac-Hartree approximation
we have used here). However, the size of the nucleus does
specifically affect the spin and pseudospin doublets. For
instance, in the Hartree approximation, the SOP presents
only a very weak dependence on the SP energy and, con-
sequently, its form is almost identical for the states of
all SDs. As the SOP becomes large in the nuclear sur-
face, the SDs corresponding to the inner nucleons are rel-
atively more affected by the SOP in light nuclei than in
heavy ones. Thus, the spin-orbit splitting of a given SD is
larger in light nuclei than in heavy ones (although the pro-
ton fraction Z/A can have also a non-negligible influence,
mainly through the pion contribution in the relativistic
Hartree-Fock approximation [19]).

The PSOP, on the contrary to the SOP, strongly de-
pends on the SP energy ε. Thus, the singularity point r0 is
determined by the value of ε. In particular, as it increases,
the value of r0 increases. Then, each state of a PSD
has its corresponding associate value of r0. Furthermore,
around the singularity point, the PSOP behaves always
as (r − r0)

−1, being, roughly, an odd operator. We have
already discussed above some consequences of this be-
haviour of the PSOP on the splitting of the PSDs. To un-
derstand the subtle consequences of all this on the differ-
ent nuclei is quite difficult. However, there is an important
point that distinguishes heavy nuclei from light ones in re-
lation with the spin and pseudospin symmetries. In heavy
nuclei, there are SDs and PSDs with larger values of nr
and ñr, respectively, than in light nuclei. Thus, concerning
the SDs, the role of the terms containing G′ and, mainly,
of those containingG′′ in eq. (6) increases, relatively to the
role of the SOP, with the number of nodes (nr) of G and,
consequently, the two functions of a SD, Ga and Gb, be-
come more similar as nr increases. As we have explained
in the previous section, something very similar happens
for the two functions Fa and Fb of a PSD as their number
of nodes ñr increases. In this case, furthermore, the corre-
sponding energies εa and εb approach each other. This fact
can be also explained by the relative minor relevance of the
F −κ term [16]. However, the splittings of the SDs do not
decrease, in general, as nr increases. This can be explained
because the states of a SD with large values of nr take rel-
evant values closer to the nuclear surface (where the SOP
is large) than the states of a SD with small values of nr.

We have seen for the 40Ca nucleus that the G and
F functions of the partner states of the 1d SD and their
corresponding energies vary continuously as functions of
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κ when κ is allowed to vary continuously as a real number
(κ̄). This feature remains valid for the neutron and proton
SDs of all nuclei, independently of the value of nr. The
discontinuity of ε and F (as solutions of eq. (12)), found
for the neutron PSD of the 40Ca nucleus when κ̄ varies
continuously from κa to κb, is also a general result valid,
in particular, for all PSDs with larger values of ñr, though
the similarity of the wave functions Fa and Fb of a PSD
strongly increases with ñr. This is so because the PSOP
remains singular at r0.

7 Conclusions

We have studied, in a comparative way, the effects of the
spin and pseudospin symmetry breaking terms SOP and
PSOP, respectively, on the energies and the large and
small components of the Dirac spinors corresponding to
the spin and pseudospin doublets. We have investigated,
in particular, the analytical properties of the small compo-
nent F of the Dirac spinor for PSDs around the singularity
point of the PSOP. We have shown that the PSOP and
the PCB must be appropriately related to each other to
describe adequately the SP wave functions in the nuclear
surface. The relation between l̃ and κ, l̃(l̃+1) = κ(κ− 1),
for the PSDs is necessary (but not always sufficient) to get
solutions of the Dirac equation with analytical behaviour
for G and F in the nuclear surface where the PSOP is
singular. However, the situation is not the same for the
centrifugal barrier and the SOP for the SDs. In this case,
the relation l(l+1) = κ(κ+1) does not play an important
role. Even if this relation is not fulfilled as, for example,
when κ varies as a real parameter in the SOP, its effect
is almost perturbative (in particular, the variations of the
components G and F of the Dirac spinors for the SDs are
very small).

We have determined a modified PSOP that produces
smaller effects on the energy and wave function than the
PSOP when the parameter κ̄ appearing in it is left to vary
in a domain of real values rather than keeping it equal to
its physical (integer) value. This has allowed us to define
a continuous way to connect the two states of a PSD as κ̄
varies continuously between the two physical values of κ,
κa and κb, corresponding to these two states.

The strong effect of the PSOP, as κ is allowed to vary
as a real number (κ̄), contrasts with the fact that the SOP
is a smooth function of κ, although the splittings of the
SDs are generally larger than the splittings of the PSDs.
The strong differences found between the effects of the
SOP and PSOP on the energies and wave functions of the
partner states of the SDs and PSDs, respectively, indicate
that the approximate PSS found in real nuclei is more
easily explained starting from a model that requires the
degeneracy of PSDs but not the equality (or even not the
proportionality) of the small F components of the pseu-
dospin partners. This is possible since the degeneracy of
the PSDs does not require the equality (or proportional-
ity) of the small F functions of the two partners, on the
contrary, they must be non-proportional to each other.

Thus, the approximations εa ' εb and Fa ' Fb are
not strictly dependent on each other (as happens for the
energies and G functions of the SDs). This allows us to
give a simple explanation of the PSS, starting from an
oversimplified nuclear model where nucleons move in a
harmonic-oscillator potential without spin-orbit interac-
tion, which presents exact degeneracy for PSDs but with
Fa 6= Fb (though Fa ' Fb). The inclusion of a more real-
istic potential and of the spin-orbit interaction breaks the
degeneracy of PSDs, but still keeps εa ' εb and Fa ' Fb,
and these latter approximate relations are improved as
ñr increases. It is worth stressing that this explanation
is valid both for relativistic and for non-relativistic mod-
els. This is important, since the terms breaking the PSS
cannot be considered as exclusively relativistic.

This work has been supported by the DGESIC grant FIS2005-
04033.

Appendix A. Analytical behaviour of the F
function near the singularity point r0

In this appendix, we explore the analytical properties of
the small component F of the Dirac spinor as a solution
of eq. (12). We let κ̄ to take values between κa and κb
corresponding to the two values of κ of the partner states
of a PSD. As we will see, F is analytical only if κ̄ takes
the physical values κa = −la − 1 and κb = lb. For other
values of κ̄, there is a logarithmic term which destroys the
analyticity. Nevertheless, F and its first derivative F ′ are
continuous everywhere.

A very important fact related to eq. (12) is that the
quantity V (r) vanishes at some point r0 for bound states
(ε < 0). To see how F (r) behaves near the singularity
point r0 let us expand it in powers of δ = r − r0:

F (r) =

∞
∑

k=0

Fkδ
k + δ2 ln δ

∞
∑

k=0

fkδ
k. (A.1)

To prove that this representation is compatible with
eq. (12), we also expand the coefficients of eq. (12) into
the powers of δ as follows:

V ′

V
=

1

δ
+

∞
∑

k=0

αkδ
k,

κ̄

r
·
V ′

V
=

κ̄

r0
·
1

δ
+

∞
∑

k=0

βkδ
k,

l̃(l̃ + 1)

r2
=
l̃(l̃ + 1)

r20
+

∞
∑

k=1

γkδ
k,

V W =
∞
∑

k=1

ηkδ
k. (A.2)

If we substitute the expansions (A.1) and (A.2) into
eq. (12), collect all terms proportional to δn and δn ln δ
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and put their respective coefficients equal to zero, we get
the following recurrence relations:

n(n+ 2)fn =

{

−
κ̄

r0
fn−1 +

l̃(l̃ + 1)

r20
fn−2

+f0(2αn−1 − βn−2 + γn−2 + ηn−2)

+

n−1
∑

m=1

fm(3αn−m−1 − βn−m−2 + γn−m−2 + ηn−m−2)

}

,

(A.3)

n(n− 2)Fn =

{

−
κ̄

r0
Fn−1 +

l̃(l̃ + 1)

r20
Fn−2

−F0(βn−2 − γn−2 − ηn−2) +
n−1
∑

m=1

Fm(mαn−m−1

+αn−m−3 − βn−m−2 + γn−m−2 + ηn−m−2)

−2(n− 1)fn−2 +

n−3
∑

m=0

αn−m−3fm

}

. (A.4)

In relations (A.3) and (A.4), the quantities f , F , α, β,
γ and η are assumed to be equal to zero if their indices
are negative, and besides γ0 = η0 = 0, which follows from
eq. (A.2). Putting n = 1 in eq. (A.4) one obtains

F1 =
κ̄

r0
F0. (A.5)

This relation ensures that the second term in eq. (12) is
finite at r = r0. Setting n = 0 in eq. (A.3) yields

f0 =
l̃(l̃ + 1)− κ̄(κ̄− 1)

2r20
F0, (A.6)

if one takes into account that

α0 =
V ′′(r0)

2V ′(r0)

and

β0 = −
κ̄

r20
+
κ̄

r0
·
V ′′(r0)

2V ′(r0)
.

It is worth noting that F2 cannot be obtained from
eq. (A.4). Then, F0 and F2 are to be considered free. Thus,
we have a peculiar situation: we cannot arbitrarily fix the
value of the solution of eq. (12) and its first derivative
at the point r0 though it is a second-order equation. In-
stead, F (r0) and F ′′(r0) can be chosen freely. Then, all
other Fn and fn coefficients are calculated using eq. (A.3)
and eq. (A.4). Such property of eq. (12) is related to the
singularity of its coefficients at r = r0. From eq. (A.6),
we can conclude that if the value of κ̄ is not equal to κa
or κb, then, the solution of eq. (12) is not analytical be-
cause of the logarithmic term in eq. (A.1). One sees from
expression (A.1) that F (r) and its first derivative are con-
tinuous at r0 but the second- and higher-order derivatives
are infinite.

Appendix B. Analysis of the behaviour of the
solutions of eq. (29) for F

We analyse, in a qualitative way, some important features
of the solutions of the eq. (29) for F ,

−F ′′ +

[

V ′0 + V ′1
V0 + V1

(

F ′

F
−
κ

r

)

+
l̃(l̃ + 1)

r2

+ (V0 + V1)(W0 +W1)

]

F = 0, (B.1)

in relation with the PSS. The potentials V0, V1, W0 and
W1 satisfy the relations W =W0 +W1 and V = V0 + V1.
As explained in sect. 5, they are defined so that if we
take W1 = V1 = 0, the remaining part H0 of the Dirac
Hamiltonian given by eq. (1) exhibits exact degeneracy
of PSDs (though Fa 6= Fb). We have, in particular,
W0 = 2M + ε0 and V0 = Ω − ε0, Ω being an appropriate
harmonic-oscillator potential for a given nucleus and ε0
the SP binding energy (with opposite sign) corresponding
to H0.

Firstly, we take into account that near the singularity
point r0,

V ′0 + V ′1
V0 + V1

'
1

r − r0
(B.2)

and
V ′0
V0
'

1

r − r00
, (B.3)

where r00 is defined by the condition V0(r00) = 0. Then,
admitting that r00 ' r0

9 and that the main contribution
of the term involving the factor (V ′0+V

′

1)/(V0+V1) comes
from the region near r0, where it is singular, we can
replace this factor by the quantity V ′0/V0. The resulting
equation is

−F ′′ +

[

V ′0
V0

(

F ′

F
−
κ

r

)

+
l̃(l̃ + 1)

r2

+ (V0 + V1)(W0 +W1)

]

F ' 0. (B.4)

Now, to study the solutions of this equation, we write
F = F0 + F1, where F0 and F1 satisfy the equations

−F ′′0 +

[

V ′0
V0

(

F ′0
F0
−
κ

r

)

+
l̃(l̃ + 1)

r2
+ V0W0

]

F0 = 0,

(B.5)
and

−F ′′1 +

[

V ′0
V0

(

F ′1
F1
−
κ

r

)

+
l̃(l̃ + 1)

r2
+ (V0 + V1)(W0 +W1)

]

×F1 + (V0W1 + V1W0 + V1W1)F0 ' 0, (B.6)

respectively.

9 Notice that, in principle, it is possible to choose the
harmonic-oscillator potential Ω so that r00 = r0.
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If the κ term entering this equation is taken from
eq. (B.5), we have

− F ′′1 +
F ′′0
F0

F1 +

[

V ′0
V0

(

F ′1
F1
−
F ′0
F0

)

+ V0W1 + V1W0

+ V1W1

]

F1 + (V0W1 + V1W0 + V1W1)F0 ' 0. (B.7)

We know that εa0 = εb0, but as Fa0 6= Fb0 we will have
εa1 6= εb1 and Fa1 6= Fb1. However, since as ñr increases,
Fa0 approaches Fb0, it will happen that εa1 approaches εb1
and Fa1 approaches Fb1. Consequently, εa will approach εb
and the PSS will be improved as ñr increases, as confirmed
by calculations [15]. Thus, the quasi-degeneracy of the
PSDs and the similarity of Fa and Fb can be explained in a
simple way, starting from an oversimplified nuclear model
where nucleons move in a harmonic-oscillator potential
without spin-orbit interaction, which presents exact de-
generacy for PSDs but with Fa 6= Fb (though Fa ' Fb).
The inclusion of a more realistic potential and of the spin-
orbit interaction breaks the degeneracy of PSDs, but still
εa ' εb and Fa ' Fb, and these approximations are im-
proved as ñr increases.
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Phys. Rev. C 62, 054309 (2000).
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16. S. Marcos, M. López-Quelle, R. Niembro, L.N. Savushkin,
J. Phys. G 31, S1551 (2005).
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